skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sambale, Benjamin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Letk(B0) andl(B0) respectively denote the number of ordinary andp-Brauer irreducible characters in the principal blockB0of a finite groupG. We prove that, ifk(B0)−l(B0) = 1, thenl(B0) ≥p− 1 or elsep= 11 andl(B0) = 9. This follows from a more general result that for every finite groupGin which all non-trivialp-elements are conjugate,l(B0) ≥p− 1 or elsep= 11 and$$G/{{\bf{O}}_{{p^\prime }}}(G) \cong C_{11}^2\, \rtimes\,{\rm{SL}}(2,5)$$ G / O p ( G ) C 11 2 SL ( 2 , 5 ) . These results are useful in the study of principal blocks with few characters. We propose that, in every finite groupGof order divisible byp, the number of irreducible Brauer characters in the principalp-block ofGis always at least$$2\sqrt {p - 1} + 1 - {k_p}(G)$$ 2 p 1 + 1 k p ( G ) , wherekp(G) is the number of conjugacy classes ofp-elements ofG. This indeed is a consequence of the celebrated Alperin weight conjecture and known results on bounding the number ofp-regular classes in finite groups. 
    more » « less
  2. null (Ed.)